首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9621篇
  免费   873篇
  国内免费   3162篇
化学   10036篇
晶体学   167篇
力学   110篇
综合类   95篇
数学   1556篇
物理学   1692篇
  2024年   22篇
  2023年   151篇
  2022年   174篇
  2021年   291篇
  2020年   344篇
  2019年   346篇
  2018年   298篇
  2017年   313篇
  2016年   378篇
  2015年   343篇
  2014年   416篇
  2013年   803篇
  2012年   499篇
  2011年   549篇
  2010年   483篇
  2009年   588篇
  2008年   610篇
  2007年   682篇
  2006年   548篇
  2005年   558篇
  2004年   531篇
  2003年   478篇
  2002年   382篇
  2001年   375篇
  2000年   303篇
  1999年   289篇
  1998年   261篇
  1997年   236篇
  1996年   228篇
  1995年   181篇
  1994年   179篇
  1993年   195篇
  1992年   189篇
  1991年   136篇
  1990年   128篇
  1989年   147篇
  1988年   151篇
  1987年   162篇
  1986年   156篇
  1985年   146篇
  1984年   134篇
  1983年   87篇
  1982年   35篇
  1981年   32篇
  1980年   22篇
  1979年   23篇
  1978年   14篇
  1977年   13篇
  1976年   10篇
  1974年   15篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
31.
The presence of pathogenic bacteria in water is one of the important health concerns in the world. Herein, we report a new high-performance environmentally friendly poly (urethane-imide) (PUIm) containing β-cyclodextrin (β-CD) in its backbone to adsorb bacteria from water samples with significant heat resistance. New PUIm was prepared by bonding a diisocyanate as a new cross linking agent to β-CD and magnetic nanoparticles (MNPs). The effects of concentrations of bare polymer and polymer bounded to iron nanoparticles and contact times on the adsorption of staphylococcus aureus and Escherichia coli were considered at physiological pH. The adsorption capacity of this polymer is increased by binding it to MNPs and in addition it is possible to separate the polymer from aqueous sample with external magnetic field. A filter was also provided from polymer attached to iron nanoparticles and high percentages of bacteria were removed after filtering the real wastewater.  相似文献   
32.
Mononuclear iron-containing enzymes are highly versatile oxidants that often react stereospecifically and/or regioselectively with substrates. Combined experimental and computational studies on heme monooxygenases, nonheme iron dioxygenases and halogenases have revealed the intricate details of the second-coordination sphere, which determine this specificity and selectivity. These second-coordination sphere effects originate from the positioning of the substrate and oxidant, which involve the binding of the co-factors and substrate into the active site of the protein. In addition, some enzymes affect the selectivity and reactivity through charge-stabilization from nearby bound cations/anions, an induced electric field or through the positioning of salt bridges and hydrogen-bonding interactions to first-coordination sphere iron ligands and/or the substrate. Examples of all of these second-coordination sphere effects in iron-containing enzymes and how these influence structure and reactivity are given.  相似文献   
33.
In recent times, polyaniline (PANI), a conducting polymer, has been studied widely for environmental remediation application due to its controllable electric conductivity with high surface area, which makes it a suitable adsorbent material. But lower mechanical stability of PANI is considered to be a serious drawback for its large-scale industrial application. To improve the mechanical strength of PANI, in this study, hematite nanoparticles were impregnated onto PANI by oxidative polymerization method in order to fabricate a novel organometallic nanocomposite (hematite-PANI-NC). The hematite-PANI-NC was used as adsorbent for removal of methyl orange (MO) and eosin yellow (EY) dye from binary dye matrix under ultrasonic-assisted adsorption. Excellent MO and EY dye removal (more than 98%) was observed from binary matrix at a wide solution pH from 2.0 to 6.0, and under ultrasound wave the adsorption equilibrium was achieved within 15 min only. Both MO and EY dyes adsorption experimental data strictly followed Langmuir isotherm, and maximum monolayer adsorption capacity of 126.58 mg/g and 112.36 mg/g was observed for MO and EY dye, respectively. The uptake mechanism of MO and EY dyes onto hematite-PANI-NC is governed by electrostatic interaction, π-π bonding and hydrogen bonding between dye molecules and nanocomposite. Response surface methodology analysis reveals maximum MO and EY removal of 98.43% and 99.35% at optimum experimental conditions. This study implies that the hybrid organometallic material hematite-PANI-NC has high potential for quick and enhanced sono-assisted uptake of anionic dyes from water near neutral solution pH.  相似文献   
34.
Alpha-phenylethanol (PE) is an essential chemical in the field of medicine and synthetic perfumery. Therefore, in this work, we used a supported Ni–B–P amorphous alloy catalyst (Ni–B–P/SiO2) in the hydrogenation of acetophenone (AP) to α-PE, which demonstrated excellent catalytic activity and selectivity, compared with Ni–B/SiO2 (KBH4 reduction of nickel salt). Ni–B–P/SiO2 exhibited a high AP hydrogenation conversion of approximately 99%, whereas the PE selectivity reached up to 94%, which is approximately 1.4-fold higher than that of Ni–B/SiO2 (about 69%), thereby directly proving the unique inhibition of AP hydrogenation over hydrogenation of P in the Ni–B catalytic system. The doped P in Ni–B–P/SiO2 enhances the oxidation resistance and maintains the valence stability of Ni and B. Furthermore, sufficient experimental data were collected to determine the kinetic parameters. Based on the Langmuir–Hinshelwood model, we assumed that (i) AP and H2 compete for adsorption on Ni–B–P/SiO2; (ii) AP has strong adsorptive capacity on Ni–B–P/SiO2; and (iii) PE coverage on the catalyst was negligible. Then, the dynamic equation was derived, which indicated that experimental data agree well with the dynamic model. Finally, the activation energy was confirmed to be 50.73 KJ/mol. This report will open up an avenue for the industrialization of amorphous alloy catalysts.  相似文献   
35.
Four new heteroleptic [Cu(NN)P2]+-type cuprous complexes— 1 -TPP, 2 -POP, 3 -Xantphos, and 4 -DPPF—were designed and synthesized using a diimine ligand 2-(2′-pyridyl)benzoxazole (2-PBO) and different phosphine ligands (TPP, triphenylphosphine; POP, bis[2-(diphenylphosphino)phenyl]ether; Xantphos, 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; DPPF, 1,1′-bis(diphenylphosphino)-ferrocene). All complexes were characterized using single-crystal X-ray diffraction, spectroscopic analysis (infrared, UV–Vis.), elemental analysis, and photoluminescence (PL). Single-crystal X-ray diffraction revealed complexes 1 – 4 as isolated cation complex structures with a tetrahedral CuN2P2 coordination geometry and diverse P–Cu–P angles. Their UV–Vis. absorption spectra exhibited a blue-shift sequence in wavelength with an enlarged P–Cu–P angle from 4 to 2 then to 3 and then to 1 . The PL emission peaks of 1 – 3 also exhibited a similar blue-shift sequence ( 2 → 3 → 1 ). Their PL lifetime in microseconds (~7.5, 5.1, and 4.7 μs for 1 , 2 , and 3 , respectively) indicated that their PL behavior represents phosphorescence. Time-dependent density functional theory (TD-DFT) calculation and wavefunction analysis revealed that S1 and T1 states of 1 – 3 should be assigned as metal–ligand and ligand–ligand charge-transfer (ML + L'L)CT states. Their UV–Vis. absorption and phosphorescence should be attributed to the charge transfer from the P–Cu–P segment to the 2-PBO ligand. Therefore, as the P–Cu–P angle increased (lower HOMO), the energy of S1 and T1 states also increased, following the change of PL color.  相似文献   
36.
A novel metal–organic framework material {[N(C2H5)3][Zn2(ptmda)22-H2O)]·(H2O)0.5}n { GUT-3 ; H2ptmda is 4,4′-([p-tolylazanediyl]bis [methylene])dibenzoic acid} was successfully synthesized using the hydrothermal method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. GUT-3 has a two-dimensional network based on dinuclear [Zn2(ptmda)2(μ2-H2O)] building units which formed an eightfold interpenetration network in GUT-3 molecules. Hirshfeld surface analysis revealed that H–H, C–H, and O–H bonds accounted for the majority of intermolecular interactions. Moreover, the interactions between GUT-3 and As(V) – the form of As(V) is AsO43− – were analyzed in aqueous solutions in a batch system to study the effect of pH, concentration, adsorbent dose, adsorption time, adsorption temperature, and shaking speed. The kinetic and isotherm data of arsenic adsorption on GUT-3 were accurately modeled by pseudo-second-order, Langmuir (qm = 33.91 mg/g), and Freundlich models. The Box–Behnken response surface method was used to optimize the adsorption conditions of As(V) from the simulated arsenic-contaminated wastewater. The effect of various experimental parameters and optimal experimental conditions was ascertained using the quadratic model.  相似文献   
37.
A new copper (II) coordination complex formulated as [Cu (dipic)(phen)(2-MePy)]. 2H2O ( 1 ) where phen = 1, 10-phenanthroline, dipic2− = pyridine-2,6-dicarboxylato and 2-MePy = 2-methyl pyrrole was synthesized through a simple and environment-friendly reaction under ultrasound irradiation. Also, complex 1 was synthesized by hydrothermal process at 120 °C for 3 days. The corresponding structure of complex 1 was characterized by elemental analysis, atomic absorption spectroscopy (AAS), inductively coupled plasma (ICP), conductivity measurement, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, ultraviolet–visible spectroscopy (UV–Vis), thermal gravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and fluorescence. The crystal structure of the hydrothermally synthesized complex was characterized by single crystal X-ray diffraction (SC-XRD(, which revealed a triclinic structure. In the remainder of this study, the Cu2O nanoparticles have been prepared via thermal decomposition of hydrothermal and ultrasound complexes and characterized by ICP, FT-IR, powder X-ray diffraction (XRD), SEM and N2 adsorption/desorption. Adsorption and visible-light-driven photocatalytic capabilities of two synthetic Cu2O were investigated in the removal of MB from water. The result showed that the synthesized catalysts have good catalytic activity and the photocatalytic degradation is more effective in dye removal of MB compared with the adsorption.  相似文献   
38.
Let q be an nth root of unity for n>2 and let Tn(q) be the Taft (Hopf) algebra of dimension n2. In 2001, Susan Montgomery and Hans-Jürgen Schneider classified all non-trivial Tn(q)-module algebra structures on an n-dimensional associative algebra A. They further showed that each such module structure extends uniquely to make A a module algebra over the Drinfel'd double of Tn(q). We explore what it is about the Taft algebras that leads to this uniqueness, by examining actions of (the Drinfel'd double of) Hopf algebras H “close” to the Taft algebras on finite-dimensional algebras analogous to A above. Such Hopf algebras H include the Sweedler (Hopf) algebra of dimension 4, bosonizations of quantum linear spaces, and the Frobenius–Lusztig kernel uq(sl2).  相似文献   
39.
In the present work we characterize the existence of quasistationary distributions for diffusions on (0,) allowing singular behavior at 0 and . If absorption at 0 is certain, we show that there exists a quasistationary distribution as soon as the spectrum of the generator is strictly positive. This complements results of Cattiaux et al. (2009) and Kolb and Steinsaltz (2012) for 0 being a regular boundary point and extends results by Cattiaux et al. (2009) on singular diffusions.  相似文献   
40.
In this study, core‐shell structures of magnetite nanoparticles coated with CMK‐8 ordered mesoporous carbon (Fe3O4@SiO2‐CMK‐8 NPs) have been successfully synthesized for the first time by carbonizing sucrose inside the pores of the Kit‐6 mesoporous silica. The nano‐sized mesoporous particles were characterized by X‐ray diffraction, Fourier transform‐infrared spectroscopy, scanning electron microscope, dynamic light scattering, vibrating‐sample magnetometer, Brunauer–Emmett–Teller (BET) and transmission electron microscopy instruments. The obtained nanocomposite was used for removal of Reactive Yellow 160 (RY 160) dye from aqueous samples. The N2 adsorption–desorption method (at 77 K) confirmed the mesoporous structure of synthesized Fe3O4@SiO2‐CMK‐8 NPs. Also, the surface area was calculated by the BET method and Langmuir plot as 276.84 m2/g and 352.32 m2/g, respectively. The surface area, volume and pore diameter of synthesized nanoparticles (NPs) were calculated from the pore size distribution curves using the Barrett–Joyner–Halenda formula (BJH). To obtain the optimum experimental variables, the effect of various experimental parameters on the dye removal efficiency was studied using Taguchi orthogonal array experimental design method. According to the experimental results, about 90.0% of RY 160 was removed from aqueous solutions at the adsorbent amount of 0.06 g, pH 3 and ionic strength = 0.05 m during 10 min. The pseudo‐second order kinetic model provided a very good fit for the RY 160 dye removal (R2 = 0.999). The Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were applied to describe the equilibrium isotherms, and the Langmuir isotherm showed the best fit to data with the maximum adsorption capacity of 62.893 mg/g. Furthermore, the Fe3O4@SiO2‐CMK‐8 NPs could be simply recovered by external magnet, and exhibited recyclability and reusability for a subsequent six runs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号